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Django, HTTP and WSGI

You take a request... 

...and return a response



How django works
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WebSockets
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Django channels!!!
Developer-friendly asynchrony for Django 



What is it?
Channels extends Django to add a new layer

Allows:

● WebSocket handling
● Background tasks
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How?
Change from running Django under a WSGI server, to running:

- An ASGI server, probably Daphne (interface servers)
- Django worker servers (workers)
- Something to route ASGI requests over, like Redis. (channel 

backend)



Channels Concepts



What is a channel
Ordered, FIFO queue,  at-most-once delivery.

def my_consumer(message):
    pass

channel_routing = {
    "some-channel": 
"myapp.consumers.my_consumer",
}



Channels

● websocket.connect
● websocket.disconnect
● websocket.receive
● websocket.send

● http.request
● http.disconnect

There are some useful default channels



Groups
Set of channels you broadcast to

Group("some_group").add(message.reply_channel)

Group("some_group").send({
        "text": json.dumps({
            "id": instance.id,
            "content": instance.content
        })



Install

INSTALLED_APPS = (
    'django.contrib.auth',
    'django.contrib.contenttypes',
    ...
    'channels',
)

pip install -U channels



How a channels project looks like
liveblog/

liveblog/
settings.py
....
asgi..p
wsgi.py
routing.py

posts/
consumers.py
models.py
...



routing.py
route("websocket.connect", connect_blog,

    path=r'^/liveblog/(?P<slug>[^/]+)/stream/$'),

route("websocket.disconnect", disconnect_blog,
           th=r'^/liveblog/(?P<slug>[^/]+)/stream/$'),

route("websocket.receive", save_post,
           path=r'^/liveblog/(?P<slug>[^/]+)/stream/$'),



Examples



Liveblog
People open a WebSocket when they open the page

Their Websocket is added to a group

When a Blog post is saved, the post pis send to the group



Liveblog
Their Websocket is added to a group

def connect_blog(message):
    group("liveblog").add(message.reply_channel)

When a Blog post is saved, the post is send to the group

class Post(models.Model):
    ...
    def save(self, *args, **kwargs):
        ...
            Group(“.liveblog”.send({
                "text": json.dumps(notification),
        })



Chat
People can send messages, and they send to everyone connected

When people connect they join a chat group

When we receive a message we send it pto the group



Chat
When people connect they join a chat group

def connect_blog(message):
    group("chat").add(message.reply_channel)

When we receive a message we send it to the group

Group(“chat”).send({"text": json.dumps(notification),



Deploy!!



Architecture
● ASGI

○ Dapne
○ WSGI Adapter

● Backend
○ Redis
○ Posix
○ In-memory

● Worker
○ Django
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Scalable
● Interface servers scale horizontally

● Worker server scale horizontally

● Channel layer could be the bottleneck (Sharding)



Alternatives
● websockets, Autoban (based in Asyncio, Twisted)

● Django-websockets (abandoned)

● Flask-websockets

● Tornado websocket

Channels  is different!?!



Channels  is different!!
Others options are a way of making a single Python process act 
asynchronously

In django-channels all the code you write for consumers runs 
synchronously.

Channels provide a high-throughput solution that is mostly reliable, 
rather than a low-throughput one that is nearly completely reliable.



Should I use channels?
● Scalable

● It’s becoming a mature project

● Support (an official Django project since September 2016)

● Mozilla sponsorship

● Community

● Documentation



Further Reading
https://channels.readthedocs.io

https://github.com/django/channels/

https://github.com/andrewgodwin/channels-examples

https://www.youtube.com/watch?v=2sEPipctTxw
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