
Django Channels - WebSockets
with Django

Rafael Laverde

11 February 2017
Pycon Colombia

Rafael Laverde

- Junior Developer at
Spyder-IDE (Continuum
Analytics)

- 3+ years experience with
python (django, scientific
computing...)

- Also freelance.
- Trying to create Python Tunja.
- Software Libre advocate

@rlaverde

@rafa_laverde

http://cusol.uis.edu.co

cusol@uis.edu.co

@cusol_org

facebook/cusol

Festival de Cultura Libre

http://cusol.uis.edu.co
http://cusol.uis.edu.co
mailto:cusol@uis.edu.co
mailto:cusol@uis.edu.co

Django, HTTP and WSGI

You take a request...

...and return a response

How django works
Browser

Webserver (WSGI)

Django

View

HTTP1

Browser Server

request

request

request

response

response

response

response

HTTP2

Browser Server

requestrequest

response

request

response

request

response

WebSockets

Browser Server

receive

send

receive

send

send

send

receive

Django channels!!!
Developer-friendly asynchrony for Django

What is it?
Channels extends Django to add a new layer

Allows:

● WebSocket handling
● Background tasks

How?

Interface
Server

Channel
Layer

Interface
Server

Worker
Server

Worker
Server

Worker
Server

Asynchronous
socket handling

Synchronous
django project

How?
Change from running Django under a WSGI server, to running:

- An ASGI server, probably Daphne (interface servers)
- Django worker servers (workers)
- Something to route ASGI requests over, like Redis. (channel

backend)

Channels Concepts

What is a channel
Ordered, FIFO queue, at-most-once delivery.

def my_consumer(message):
 pass

channel_routing = {
 "some-channel":
"myapp.consumers.my_consumer",
}

Channels

● websocket.connect
● websocket.disconnect
● websocket.receive
● websocket.send

● http.request
● http.disconnect

There are some useful default channels

Groups
Set of channels you broadcast to

Group("some_group").add(message.reply_channel)

Group("some_group").send({
 "text": json.dumps({
 "id": instance.id,
 "content": instance.content
 })

Install

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 ...
 'channels',
)

pip install -U channels

How a channels project looks like
liveblog/

liveblog/
settings.py
....
asgi..p
wsgi.py
routing.py

posts/
consumers.py
models.py
...

routing.py
route("websocket.connect", connect_blog,

 path=r'^/liveblog/(?P<slug>[^/]+)/stream/$'),

route("websocket.disconnect", disconnect_blog,
 th=r'^/liveblog/(?P<slug>[^/]+)/stream/$'),

route("websocket.receive", save_post,
 path=r'^/liveblog/(?P<slug>[^/]+)/stream/$'),

Examples

Liveblog
People open a WebSocket when they open the page

Their Websocket is added to a group

When a Blog post is saved, the post pis send to the group

Liveblog
Their Websocket is added to a group

def connect_blog(message):
 group("liveblog").add(message.reply_channel)

When a Blog post is saved, the post is send to the group

class Post(models.Model):
 ...
 def save(self, *args, **kwargs):
 ...
 Group(“.liveblog”.send({
 "text": json.dumps(notification),
 })

Chat
People can send messages, and they send to everyone connected

When people connect they join a chat group

When we receive a message we send it pto the group

Chat
When people connect they join a chat group

def connect_blog(message):
 group("chat").add(message.reply_channel)

When we receive a message we send it to the group

Group(“chat”).send({"text": json.dumps(notification),

Deploy!!

Architecture
● ASGI

○ Dapne
○ WSGI Adapter

● Backend
○ Redis
○ Posix
○ In-memory

● Worker
○ Django

WSGI and/or ASGI

Interface
Server

Channel Layer

WSGI
app

Worker
Server

Channel Layer

Interface
Server

Worker
Server

Channel Layer

Interface
Server

Scalable
● Interface servers scale horizontally

● Worker server scale horizontally

● Channel layer could be the bottleneck (Sharding)

Alternatives
● websockets, Autoban (based in Asyncio, Twisted)

● Django-websockets (abandoned)

● Flask-websockets

● Tornado websocket

Channels is different!?!

Channels is different!!
Others options are a way of making a single Python process act
asynchronously

In django-channels all the code you write for consumers runs
synchronously.

Channels provide a high-throughput solution that is mostly reliable,
rather than a low-throughput one that is nearly completely reliable.

Should I use channels?
● Scalable

● It’s becoming a mature project

● Support (an official Django project since September 2016)

● Mozilla sponsorship

● Community

● Documentation

Further Reading
https://channels.readthedocs.io

https://github.com/django/channels/

https://github.com/andrewgodwin/channels-examples

https://www.youtube.com/watch?v=2sEPipctTxw

https://channels.readthedocs.io
https://channels.readthedocs.io
https://github.com/django/channels/
https://github.com/django/channels/
https://github.com/andrewgodwin/channels-examples
https://github.com/andrewgodwin/channels-examples
https://www.youtube.com/watch?v=2sEPipctTxw
https://www.youtube.com/watch?v=2sEPipctTxw

Thank you!!
@rlaverde

@rafa_laverde

